“一定数量的动物研究表明与转基因食物(GMO)有关的严重的健康风险(AAEM2009)”(AAEM – 美国科学院环境医药学会 )包括不孕,免疫问题,早衰,胰岛素规律异常,以及主要脏器和消化系统的变异。美国科学院环境医药学会要求医生建议病人避食转基因(GMO)食物。【1】
从1996年开始,美国人已经在绝大多数加工食品中吃到转基因食物(GMO)成分。为什么FDA(美国食品药物管理局,简称“食药局”)不保护我们? 1992年,美国食药局宣称没有任何信息显示转基因食物跟传统种植的食物有什么本质的不同。因此食用转基因食物是安全的,绝对没有做安全性研究的必要。但是由一起诉讼案【2】公开的内部备忘录显露:他们的立场是由政务官根据白宫推广转基因的命令而设定的。而且,美国食药局负责制定该项政策的官员是Michael Taylor。他是Monsanto这个最大的生物化学公司的前律师,后来又是它的付总裁。事实上,美国食药局的科学家们反复警告转基因食物会产生无法预见的,难于发现的付作用,包括过敏,中毒,新的疾病,以及营养问题。他们力促进行长期安全研究,可是他们不被理睬。 现在,已经被认定曾经隐瞒过他们的化工产品具有毒性的那些生化公司,正在负责决定他们的转基因食物是否安全。有关行业资助的转基因食物安全性研究流于浮面,不能发现潜在的危险,人们广泛批评他们向食药局自愿征询意见,是毫无意义的装门面罢了。【3】 转基因植物如大豆,玉米,棉籽,还有canola(加拿大菜籽油)是把外来的基因强植入它们的基因链。这种植入的基因来自细菌、病毒之类的物种,它们从来没有在人类的食物中存在过。 基因工程使基因跨越物种之间的天然壁垒强行转换。它采用了不精确的实验技术,跟天然育种没有相似之处,而且根据的是关于细胞和基因的过时概念【4】。基因插植入法是用“基因枪”将基因射进一板细胞中,或者用细菌带着外来基因片断侵入细胞。然后把改变过的细胞克隆到植物中去。 广泛的、无法预知的变异 基因工程的过程产生大量的附加损害,造成植物整个基因链上几百、几千处基因突变【5】。天然基因会被消除,或被永久性地激活,或激死,成百的基因会改变它们的行为【6】。甚至插植入的基因都会受到损坏或被重新排列【7】,也会产生能引起过敏或促成疾病的新蛋白质。 市场上的转基因食物 用转基因种子种植的大宗商品作物包括:玉米(92%*),大豆(94%*),及棉花(94%*)。几乎98%的加拿大产canola (菜籽油)是为了除草剂抗性而经过转基因改造的。美国生产的甜菜估计95%以上是为了除草剂抗性而经过转基因改造的。食品杂货店卖的转基因甜玉米、木瓜、意大利瓜和夏黄菜瓜都是转基因的,不过数量不如上述品种多。转基因苜蓿用于喂养动物。 关于避免转基因食物的更多信息,可访问NonGMOShoppingGuide.com. * 有关百分比数按2015年美国耕田面积计算(根据美国农业部资料)。 越来越多的转基因作物危害的证据 转基因大豆导致过敏反应 •大豆过敏在英国引入转基因大豆后直线上升50%【8】 •皮肤刺痛过敏试验显示有些人对转基因大豆过敏,而对野生天然大豆并没有【9】 •煮熟的转基因大豆含有高达7倍的已知大豆过敏原【10】 •转基因大豆还含有一种新的未知的过敏原,是天然大豆中没发现过的【11】 转Bt基因玉米和棉花导致过敏 生化业界宣称转Bt基因毒素对人和哺乳动物是无害的,因为农民们已经使用了借助天然细菌形式做成的转Bt基因杀虫剂许多年了。事实上,暴露于喷洒型转Bt基因杀虫剂的好几百个农民已经有过敏症状【12】。喂食转Bt基因玉米的老鼠发生强烈的免疫反应【13】并发生肠道损害【14】。而且在转Bt基因作物里的毒性是设计得比天然喷洒剂强烈得多,要浓缩数千倍。 全印度的农业工人由于处理转Bt基因棉花【15】经受着使用喷洒型转Bt基因杀虫剂的工人同样的过敏反应【16】。给小鼠【17】和大鼠【18】喂食过转Bt基因玉米以后,它们也出现免疫反应。 转基因食物通不过过敏测试 没有任何测试可以证明转基因不会引起过敏。虽然WHO(世界卫生组织)推荐了筛查协约【19】,但作为食品供应的转基因大豆、玉米和木瓜全通不过那些测试 – 因为它们的转基因蛋白具有已知的过敏原的特性【20】。 转基因会使你对非转基因食物过敏 •转基因大豆极大地减少老鼠体内的的消化酶【21】。如果它同样削弱你的消化系统,你就会对许多食物敏感和过敏。 •喂食转Bt基因毒素的小鼠开始对以前无害的食物产生免疫反应【22】 •喂食转基因实验豌豆的小鼠也开始对一系列其他食物产生反应【23】(在这之前这种豌豆已经通过了所有过敏测试,那些测试是一种转基因食品上市之前要做的常规。只有这种高级的测试才揭示出这种豌豆实际上会致命,而对我们吃的转基因食物却从来没有进行过这个种测试。) 转基因食物和肝脏问题 •喂食转基因土豆的实验鼠肝脏变小,部分萎缩【24】 •喂食转基因 canola ( 加拿大菜花油) 的实验鼠肝脏比正常情况重12-16%【25】 •转基因大豆对实验鼠肝脏细胞的改变说明其有毒【26】。改喂非转基因大豆后,损害逆转【27】 转基因与生育问题及婴儿死亡率 •喂食转基因大豆的母鼠所产幼鼠一半以上在三星期内死亡【28】 •公大鼠【29】和公实验鼠【30】喂食转基因大豆后,睾丸发生变化,新生的精子细胞也发生变异。 •父母鼠喂食转基因大豆后,鼠胚胎的基因链功能发生变化【31】 •实验鼠喂食转基因玉米越久,生幼鼠越少,所生幼鼠也越小【32】 •喂食转基因大豆的母鼠所生幼鼠瘦小很多,而且一半以上在三星期内死亡(相比较,非转基因大豆控制组死亡率仅为10%)【33】 •喂食转基因大豆的母鼠,其卵巢和子宫发生变异。 •喂食转基因大豆的仓鼠到了第三代,绝大多数失去生育能力。 与转Bt基因作物有关的不育、疾病和死亡 •在印度,在收获过的转Bt基因棉花田里放牧的绵羊、水牛和山羊成千成千地死亡,未死的健康恶化,并有生育障碍。【34】 •欧洲和亚洲的农民诉说,喂食各种转Bt基因玉米的奶牛、水牛、鸡和马都会死去【35】。 •大约二十多名美国农民报告转Bt基因玉米品种广泛造成猪和牛不育【36】。 •在菲律宾,在附近的一个转Bt基因玉米品种授粉后,至少有五个村庄的村民病倒【37】。 •大鼠喂食转基因土豆后,胃内壁细胞过度生长,这是可能引发癌症的先兆。同时还有脏器损害和免疫系统损害【38】。 喂食转基因土豆后,大鼠胃内壁细胞增生。左图为胃内壁非转基因和转基因的对比,下图为肠壁非转基因和转基因的对比。 转换过的基因留在你体内不断运作 对于转基因食物,从来没有做过像药物安全评估那样的人体临床试验。唯一发表过的人类进食实验显示,植入转基因大豆的基因材料转移到了生活在我们小肠内的细菌里,而且继续运作【39】。这就是说我们不吃转基因食物很长时间后,我们体内仍旧会有转基因蛋白不断产生。 •如果植入转基因作物里的抗菌素基因转移到我们体内的细菌里,那它就会产生对抗菌素有抗药性的超级疾病。 •如果制造转基因玉米Bt-毒素的基因转移到我们体内的细菌里,那它就会把我们小肠里的细菌变成不停地生产杀虫剂的工厂。 •动物研究表明食物里的基因会进入我们全身所有的器官里,甚至进入胎儿体内【40】。 转基因补充食品引起致命流行病 1980年代,一种叫L-色氨酸的补充食品受到污染,造成100个美国人死亡,还使5000-10000 人病倒,并致残。其污染源几乎肯定是在生产过程中使用的基因工程工艺【41】。人们化了好多年才找出那疾病。几乎没被注意到。仅仅由于症状的独特性、急性发作、和快速恶化才被识别出来。如果没有这三种特性的同时出现,那个致命的转基因补充剂恐怕永远不会被发现,不会停止销售。 如果市场上的转基因食品造成的是普通疾病,或者如果它们的影响只在长期食用后才出现,那么即使最终能查明问题的根源,则也要在几十年以后。我们缺失对转基因相关疾病的监控,缺失长期的动物研究。投入巨额资本的那些生化公司正在拿我们国民的健康做赌注,为它们赢得丰厚的利润。
本文引用的健康信息摘自Jeffrey M. Smith:Genetic Roulette: The Documented Health Risk of Genetically Engineered Foods (《基因赌博:有案可查的转基因食品健康风险》,Jeffrey M. Smith 著) 更多资讯,见《65种健康风险》,Jeffrey M. Smith 著
版权所有 2015. 责任科技研究所。
(原文网址:http://responsibletechnology.org/gmo-education/health-risks/)
参考文献: [1] See http://www.aaemonline.org/gmo.php [2] See www.biointegrity.org [3] See Part 2, Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA 2007 [4] See for example 233-236, chart of disproved assumptions, in Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA 2007 [5] J. R. Latham, et al., “The Mutational Consequences of Plant Transformation,” The Journal of Biomedicine and Biotechnology 2006, Article ID 25376: 1-7; see also Allison Wilson, et. al., “Transformation-induced mutations in transgenic plants: Analysis and biosafety implications,” Biotechnology and Genetic Engineering Reviews – Vol. 23, December 2006. [6] Srivastava, et al, “Pharmacogenomics of the cystic fibrosis transmembrane conductance regulator (CFTR) and the cystic fibrosis drug CPX using genome microarray analysis,” Mol Med. 5, no. 11(Nov 1999):753–67. [7] Latham et al, “The Mutational Consequences of Plant Transformation, Journal of Biomedicine and Biotechnology 2006:1-7, article ID 25376, http://www.hindawi.com/journals/jbb/; Draft risk analysis report application A378, Food derived from glyphosate-tolerant sugarbeet line 77 (GTSB77),” ANZFA, March 7, 2001; E. Levine et al., “Molecular Characterization of Insect Protected Corn Line MON 810.” Unpublished study submitted to the EPA by Monsanto, EPA MRID No. 436655-01C (1995); Allison Wilson, PhD, Jonathan Latham, PhD, and Ricarda Steinbrecher, PhD, “Genome Scrambling—Myth or Reality? Transformation-Induced Mutations in Transgenic Crop Plants Technical Report—October 2004,” www.econexus.info; C. Collonier, G. Berthier, F. Boyer, M. N. Duplan, S. Fernandez, N. Kebdani, A. Kobilinsky, M. Romanuk, Y. Bertheau, “Characterization of commercial GMO inserts: a source of useful material to study genome fluidity,” Poster presented at ICPMB: International Congress for Plant Molecular Biology (n°VII), Barcelona, 23-28th June 2003. Poster courtesy of Dr. Gilles-Eric Seralini, Président du Conseil Scientifique du CRII-GEN, www.crii-gen.org; also “Transgenic lines proven unstable” by Mae-Wan Ho, ISIS Report, 23 October 2003, www.i-sis.org.uk [8] Mark Townsend, “Why soya is a hidden destroyer,” Daily Express, March 12, 1999. [9] Hye-Yung Yum, Soo-Young Lee, Kyung-Eun Lee, Myung-Hyun Sohn, Kyu-Earn Kim, “Genetically Modified and Wild Soybeans: An immunologic comparison,” Allergy and Asthma Proceedings 26, no. 3 (May–June 2005): 210-216(7). [10] A. Pusztai and S. Bardocz, “GMO in animal nutrition: potential benefits and risks,” Chapter 17, Biology of Nutrition in Growing Animals, R. Mosenthin, J. Zentek and T. Zebrowska (Eds.) Elsevier, October 2005. [11] Hye-Yung Yum, Soo-Young Lee, Kyung-Eun Lee, Myung-Hyun Sohn, Kyu-Earn Kim, “Genetically Modified and Wild Soybeans: An immunologic comparison,” Allergy and Asthma Proceedings 26, no. 3 (May–June 2005): 210-216(7). [12] M. Green, et al., “Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86,” Amer. J. Public Health 80, no. 7(1990): 848–852; and M.A. Noble, P.D. Riben, and G. J. Cook, Microbiological and epidemiological surveillance program to monitor the health effects of Foray 48B BTK spray (Vancouver, B.C.: Ministry of Forests, Province of British Columbi, Sep. 30, 1992) [13] Vazquez et al, “Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice,” 1897–1912; Vazquez et al, “Characterization of the mucosal and systemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice,” Brazilian Journal of Medical and Biological Research 33 (2000): 147–155; and Vazquez et al, “Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant,” Scandanavian Journal of Immunology 49 (1999): 578–584. See also Vazquez-Padron et al., 147 (2000b). [14] Nagui H. Fares, Adel K. El-Sayed, “Fine Structural Changes in the Ileum of Mice Fed on Endotoxin Treated Potatoes and Transgenic Potatoes,” Natural Toxins 6, no. 6 (1998): 219–233. [15] See for example “Bt cotton causing allergic reaction in MP; cattle dead,” Bhopal, Nov. 23, 2005 [16] http://news.webindia123.com Ashish Gupta et. al., “Impact of Bt Cotton on Farmers’ Health (in Barwani and Dhar District of Madhya Pradesh),” Investigation Report, Oct–Dec 2005; and M. Green, et al., “Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86,” Amer. J. Public Health 80, no. 7(1990): 848–852; and M.A. Noble, P.D. Riben, and G. J. Cook, Microbiological and epidemiological surveillance program to monitor the health effects of Foray 48B BTK spray (Vancouver, B.C.: Ministry of Forests, Province of British Columbi, Sep. 30, 1992) [17] Alberto Finamore, et al, “Intestinal and Peripheral Immune Response to MON810 Maize Ingestion in Weaning and Old Mice,” J. Agric. Food Chem., 2008, 56 (23), pp 11533–11539, November 14, 2008 [18] Joël Spiroux de Vendômois, François Roullier, Dominique Cellier and Gilles-Eric Séralini. 2009, A Comparison of the Effects of Three GMO Corn Varieties on Mammalian Health . International Journal of Biological Sciences 2009; 5(7):706-726; and Seralini GE, Cellier D, Spiroux de Vendomois J. 2007, New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contam Toxicol. 2007;52:596-602 [19] FAO-WHO, “Evaluation of Allergenicity of Genetically Modified Foods. Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology,” Jan. 22–25, 2001; ftp://ftp.fao.org/es/esn/food/allergyGMO.pdf.pdf [20] Gendel, “The use of amino acid sequence alignments to assess potential allergenicity of proteins used in genetically modified foods,” Advances in Food and Nutrition Research 42 (1998), 45–62; G. A. Kleter and A. A. C. M. Peijnenburg, “Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences indentical to potential, IgE-binding linear epitopes of allergens,” BMC Structural Biology 2 (2002): 8–19; H. P. J. M. Noteborn, “Assessment of the Stability to Digestion and Bioavailability of the LYS Mutant Cry9C Protein from Bacillus thuringiensis serovar tolworthi,” Unpublished study submitted to the EPA by AgrEvo, EPA MRID No. 447343-05 (1998); and H. P. J. M. Noteborn et al, “Safety Assessment of the Bacillus thuringiensis Insecticidal Crystal Protein CRYIA(b) Expressed in Transgenic Tomatoes,” in Genetically modified foods: safety issues, American Chemical Society Symposium Series 605, eds. K.H. Engel et al., (Washington, DC, 1995): 134–47. [21] M. Malatesta, M. Biggiogera, E. Manuali, M. B. L. Rocchi, B. Baldelli, G. Gazzanelli, “Fine Structural Analyses of Pancreatic Acinar Cell Nuclei from Mice Fed on GMO Soybean,” Eur J Histochem 47 (2003): 385–388. [22] Vazquez et al, “Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant,” Scandanavian Journal of Immunology 49 (1999): 578–584. See also Vazquez-Padron et al., 147 (2000b). [23] V. E. Prescott, et al, “Transgenic Expression of Bean r-Amylase Inhibitor in Peas Results in Altered Structure and Immunogenicity,” Journal of Agricultural Food Chemistry (2005): 53. [24] Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GMO food,” Nutrition and Health, 2002, Vol 16 Pp 73-84 [25] Comments to ANZFA about Applications A346, A362 and A363 from the Food Legislation and Regulation Advisory Group (FLRAG) of the Public Health Association of Australia (PHAA) on behalf of the PHAA, “Food produced from glyphosate-tolerant canola line GT73,” http://www.iher.org.au/ [26] M. Malatesta, C. Caporaloni, S. Gavaudan, M. B. Rocchi, S. Serafini, C. Tiberi, G. Gazzanelli, “Ultrastructural Morphometrical and Immunocytochemical Analyses of Hepatocyte Nuclei from Mice Fed on Genetically Modified Soybean,” Cell Struct Funct. 27 (2002): 173–180. [27] M. Malatesta, C. Tiberi, B. Baldelli, S. Battistelli, E. Manuali, M. Biggiogera, “Reversibility of Hepatocyte Nuclear Modifications in Mice Fed on Genetically Modified Soybean,” Eur J Histochem, 49 (2005): 237-242. [28] I.V. Ermakova, “Diet with the Soya Modified by Gene EPSPS CP4 Leads to Anxiety and Aggression in Rats,” 14th European Congress of Psychiatry. Nice, France, March 4-8, 2006; “Genetically modified soy affects posterity: Results of Russian scientists’ studies,” REGNUM, October 12, 2005; http://www.regnum.ru/english/526651.html; Irina Ermakova, “Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary studies,” Ecosinform 1 (2006): 4–9. [29] Irina Ermakova, “Experimental Evidence of GMO Hazards,” Presentation at Scientists for a GMO Free Europe, EU Parliament, Brussels, June 12, 2007 [30] L. Vecchio et al, “Ultrastructural Analysis of Testes from Mice Fed on Genetically Modified Soybean,” European Journal of Histochemistry 48, no. 4 (Oct–Dec 2004):449–454. [31] Oliveri et al., “Temporary Depression of Transcription in Mouse Pre-implantion Embryos from Mice Fed on Genetically Modified Soybean,” 48th Symposium of the Society for Histochemistry, Lake Maggiore (Italy), September 7–10, 2006. [32] Alberta Velimirov and Claudia Binter, “Biological effects of transgenic maize NK603xMON810 fed in long term reproduction studies in mice,” Forschungsberichte der Sektion IV, Band 3/2008 [33] I.V. Ermakova, “Diet with the Soya Modified by Gene EPSPS CP4 Leads to Anxiety and Aggression in Rats,” 14th European Congress of Psychiatry. Nice, France, March 4-8, 2006; “Genetically modified soy affects posterity: Results of Russian scientists’ studies,” REGNUM, October 12, 2005; ; Irina Ermakova, “Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary studies,” Ecosinform 1 (2006): 4–9. [34] “Mortality in Sheep Flocks after Grazing on Bt Cotton Fields—Warangal District, Andhra Pradesh” Report of the Preliminary Assessment, April 2006, http://gmowatch.org/latest-listing/1-news-items/6416-mortality-in-sheep-flocks-after-grazing-on-Bt-cotton-fields-warangal-district-andhra-pradesh-2942006 [35] Mae-Wan Ho, “GMO Ban Long Overdue, Dozens Ill & Five Deaths in the Philippines,” ISIS Press Release, June 2, 2006; and Mae-Wan Ho and Sam Burcher, “Cows Ate GMO Maize & Died,” ISIS Press Release, January 13, 2004, http://www.isis.org.uk/CA GMO MAD.php [36] Personal communication with Jerry Rosman and other farmers, 2006; also reported widely in the farm press. [37] See for example Mae-Wan Ho, “GMO Ban Long Overdue, Dozens Ill & Five Deaths in the Philippines,” ISIS Press Release, June 2, 2006; “Study Result Not Final, Proof Bt Corn Harmful to Farmers,” BusinessWorld, 02 Mar 2004; and “Genetically Modified Crops and Illness Linked,” Manila Bulletin, 04 Mar 2004. [38] Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GMO food,” Nutrition and Health, 2002, Vol 16 Pp 73-84; Stanley W. B. Ewen and Arpad Pusztai, “Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine,” Lancet, 1999 Oct 16; 354 (9187): 1353-4; and Arpad Pusztai, “Facts Behind the GMO Pea Controversy: Epigenetics, Transgenic Plants & Risk Assessment,” Proceedings of the Conference, December 1st 2005 (Frankfurtam Main, Germany: Literaturhaus, 2005) [39] Netherwood et al, “Assessing the survival of transgenic plant DNA in the human gastrointestinal tract,” Nature Biotechnology 22 (2004): 2. [40] Ricarda A. Steinbrecher and Jonathan R. Latham, “Horizontal gene transfer from GMO crops to unrelated organisms,” GMO Science Review Meeting of the Royal Society of Edinburgh on “GMO Gene Flow: Scale and Consequences for Agriculture and the Environment,” January 27, 2003; Traavik and Heinemann, Genetic Engineering and Omitted Health Research; citing Schubbert, et al, “Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice,” Mol Gen Genet. 242, no. 5 (1994): 495–504; Schubbert et al, “Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA,” Proc Natl Acad Sci USA 94, no. 3 (1997): 961–6; Schubbert et al, “On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus,” Mol Gen Genet. 259, no. 6 (1998): 569–76; Hohlweg and Doerfler, “On the fate of plants or other foreign genes upon the uptake in food or after intramuscular injection in mice,” Mol Genet Genomics 265 (2001): 225–233; Palka-Santani, et al., “The gastrointestinal tract as the portal of entry for foreign macromolecules: fate of DNA and proteins,” Mol Gen Genomics 270 (2003): 201–215; Einspanier, et al, “The fate of forage plant DNA in farm animals; a collaborative case-study investigating cattle and chicken fed recombinant plant material,” Eur Food Res Technol 212 (2001): 129–134; Klotz, et al, “Degradation and possible carry over of feed DNA monitored in pigs and poultry,” Eur Food Res Technol 214 (2002): 271–275; Forsman, et al, “Uptake of amplifiable fragments of retrotransposon DNA from the human alimentary tract,” Mol Gen Genomics 270 (2003): 362–368; Chen, et al, “Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles,” World Journal of Gastroenterology 10, no 1(2004): 112–116; Phipps, et al, “Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows,” J Dairy Sci. 86, no. 12(2003): 4070–8. [41] William E. Crist,Toxic L-tryptophan: Shedding Light on a Mysterious Epidemic; and Jeffrey M. Smith, Seeds of Deception, Yes! Books, Fairfield, IA 2003, chapter 4, Deadly Epidemic ( 译者:高育德 译校: 陆寿筠 ) |